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ABSTRACT 

Spitzer has shown that every Markov random field (MRF) is a Gibbs random 
field (GRF) and vice versa when (i) both are translation invariant, (ii) the MRF 
is of first order, and (iii) the GRF is defined by a binary, nearest neighbor 
potential. In both cases, the field (iv) is defined on Z v, and (v) at any xE Z v, 
takes on one of two states. The current paper shows that a MRF is a GRF and 
vice versa even when (i)-(v) are relaxed, i.e., even if one relaxes translation 
invariance, replaces first order by kth order, allows for many states and replaces 
finite domains o fZ  v by arbitrary finite sets. This is achieved at the expense of 
using a many body rather than a pair potential, which turns out to be natural 
even in the classical (nearest neighbor) case when Z ~ is replaced by a triangular 
lattice. 

1. Introduction 

In  a recent  paper  [6] ,  Spitzer pursued certain not ions  o f  Dobrus in  [3]  where  

the one-d imens ional  discrete t ime o f  a M a r k o v  chain  is rep laced  by the v- 

d imens iona l  discrete t ime o f  a Markov  r a n d o m  field (MRF) .  Ins tead o f  the pas t  

o f  a po in t  being one-sided,  i t  is now the complemen ta ry  set to  the point .  Thus 

even when v = 1, a quest ion arises as to the ident i ty  o f  the  two concepts.  Never-  

theless, for  the case o f  a M R F  subject  to the requirements :  

(0) there  are only two states (occupied and  unoccupied) ,  

(1) for  every conf igurat ion o~, P(co) > 0, 
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Rencontre in Statistical Mechanics and also at a pair of seminars in December, 1971, at the 
Weizmann Institute of Science. 
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2) there is translation invariance for the conditional probability, 

3) a first order one Markov condition holds, 

Spitzer showed that the conditional probabilities that arise are given by a binary, 

translation invariant, nearest neighbor Gibbs potential. (Details on these notions 

as well as conditions 0)-3) will be given in the body of the paper.) While it is 

trivial that such a Gibbs potential yields the conditional probabilities of a MRF 

satisfying 0)-3) (and as a matter of fact it is this that suggested to Dobrusin the 

notion of a MRF), it is very satisfying to know that, conversely, every MRF 

comes from a Gibbs potential since no such physical notion is mentioned in the 

purely probabilistic notion of a MRF. Here one has a particularly happy marriage 

of ideas from probability and physics. 

Spitzer had been trying to get art analogous theorem for the kth order MRF 

(definitions later) but his arguments for the first order case had art intricate geo- 

metric character which, although elegant in the latter case, ran aground in the 

kth order case. 

In this paper we consider a MRF where there are a finite number of states 

not just two, where translation invariance is not assumed, and the first order 

Markov coMition is replaced by a kth order Markov condition (in other words, 

we relax conditions 0),2), 3)); we find that here also the conditional probabilities 

are given by a Gibbs potential but this time the interaction need not be translation 

invariant and we must allow many-body interaction. Thus the happy marriage 

of ideas from probability and physics continues. A simplification of the proof even 

for Spitzer's original case results. The burden is placed on repeated use of the 

principle of inclusion and exclusion rather than geometrical argument. 

That the many body interaction is "right" can be seen even in Spitzer's original 

case for v = 2. If we retain the first order Markov condition but replace the square 

lattice for discrete time by a triangular lattice for discrete time, then pair inter- 

actions no longer sut~ice to yield the conditional probabilities. At least 3-body 

interactions must be permitted. 

Ideas used in the proof yield a simple proof of the known result [6] that, for 

v = 1, the notions of MRF and Markov chain coincide if 1) is satisfied. 

After some definitions from Spitzer's paper and routine terminology on many- 

body interactions, the exposition will proceed from simple concrete cases to more 

general cases. For convenience the order of exposition in Spitzer will be followed. 
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The proof of his main theorem uses three steps of which the first is trivial and the 

second involves the aforementioned elegant argument. In this paper the first 

trivial step is repeated mainly to establish notation. The novelty of this paper 

comes in the second step. Spitzer's third step is used here without elaboration. 

2. Definitions 

The definition of a random field (RF) will agree with that of Spitzer with the 

trivial exception that the cormectedness of the domain is not required since it is 

not used in the proof. For concreteness, the relevant definitions are repeated. Let 

Z ~ be the lattice points in v-dimensional space. For x, y in Z ~, [ x - Y[ is the 

Euclidean distance between x and y. By a domain D is meant a finite subset of  

Z v. The boundary dD of domain D is {yeZVlD:(~xeD)[ x - Y l  = 1). Use t~x 

as an abbreviation for 0{x}. Denote D u dD by/3. Use 2 as an abbreviation for 

(-~}. If  f~ = (0,1},~ ~ is the collection of all subsets of f~, and P is a probability 

measure on ~ ,  then (f~, ~,~', P) is called a random field (RF) on domain D. Thus we 

may think of a RF on D as a probability measure on the set of all configurations 

of particles on D where the configuration of particles described by co e f~ is 

(1) A = {xeD: co(x) = 1}. 

The definition used here for a Gibbs random field (GRF) differs from that of 

Spitzer insofar as the interaction is neither required to be binary nor homo- 

geneous. The notation for potential and energy will be that of [5, p. 21]. A function 

from the finite subsets of Z ~ to R (the reals) is called a potential. For each finite 

X c ZL let the energy 

(2) U(X) = ]~ r 
A c X  

Suppose we assume in addition 

(*) (Vx ~ Z v) (VE c c3x) (VH c b / x) H # J~ ~ ~({x} u E U H) = 0. 

It should be remarked that when (*) is satisfied ~(B) # 0 * #  B =< 2. This remark 

fails when the lattice Z v is replaced by a plane triangular lattice with nearest 

neighbor distance equal to 1. 

By a boundary value (BV) function is meant a map ~0: OD - ,  {0,1}. It is 

convenient to extend co e f~ to a map ~ : /3  ~ {0,1} so that 
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oo(x), x e O, 

= { 
q~(x), x e OD. 

Let A be given by (1) and 

(3) F = {xe#D:  q,(x) = 1}. 

Then {x: ~(x) = 1} = A L ) F .  

Suppose we are given a domain D c Z v and potential (I) satisfying (*). Then 

RF (s ~-, P) on D is a *GRF with potential (I) and BV function q~ if  P is defined 

by the formula 

(4) P(r = Z -x exp [ [ - U(A U F)], co e s 

A and F are given by (1) and (3) with Z being the normalizing constant so that 

Z p( o) = i .  
O) e ~  

With the above A, we also write P(A) instead of P(a)). In particular if q, --- 0 on 

0D, we get the *GRF with BV zero given by 

(5) P(A) = Z - '  exp l - U(A)], A c D.  

If  D is a rectangle with opposite points identified, it produces a lattice torus T 

without boundary. Here the *GRF on T is called a periodic *GRF and its 

probability measure P is defined by (5) with D replaced by T. 

Our definition of a Markov random field (MRF) agrees with that of Spitzer 

except that we do not require translation invariance and we use a slight variation 

in notation. As in the case of *GRF, we assume a given BV function q~: 0D 

{0,1} and we get different MRF's for different qo's. When D is replaced by T, 

we get a periodic MRF. Now a RF (fl, o~',P) on D will be called a MRF if it 

satisfies the two conditions (a), (b) below. First, we have 

(a) ( w  n) > o 

which we can write 

( V A ~ D )  P(A) >0 .  

From (a) we can define one-point conditional probabili ties 

(6) Pl-~(x) = I I ~("  ) = e(" ) on /3 \  {x}]  (Vx e D), 
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by the usual quotient. Note that e: D \ ( x ) - ~  {0, 1} is arbitrary except that e =q~ 
on 0D. If 

E = {xeOx: e(x) = 1} c ax 
(7) 

H = { x e D l 2 :  e(x) = 1} c D \ 2  

and A is as in (1), then we write (6) as 

(8) P[{x}[ E UH]. 

The second condition defining a MRF is 

(b) P[{x} ] E t3 HI  is independent of U c D / 2. 

If  (f~, ,~-, P) is a RF on domain D which satisfies (a), (b), then we say (f~, .St, p) is 

a MRF on D with BV function q~ (or a periodic MRF on D = T when D is made 

into a torus T without boundary). 

3. The main theorem 

Main Theorem. Every MRF on a domain D with BV function ~ is a 

*GRF with BV function iv and vice versa.The same statement holds for periodic 

random fields. 

We fix domain D c Z v and BV function ~p and hence F by (3). The periodic 

case cart be handled by the same method. Step 1 of the proof will show that every 

*GRF is a MRF. This is trivial and will be done as in Spitzer but using the 

notation developed. Step 2 of the proof will show that for every MRF there exists 

a *GRF with the same conditional probabilities as the MRF. The main novelty 

of this paper lies in its treatment of Step 2. 

Step 1. (Every *GRF is a MRF). Start with a *GRF whose probability 

measure P is given by (5) and go on to verify (a) and (b). Condition (a) is obvious. 

To check (b) use (8) subject to (7). Suppose that (E U H ) n  ~D =F of(3). Then 

(Vx e D) 
P[{x} W E U H] 

P [ { x } I E U H ]  = P [ { x } U E U H ] +  P [ E U H ]  

e x p ( -  ~1 q)({x} U R U S ) -  • q)(RUS))  
R c E ,  S c H  R c E ,  S c H  

exp( - ]s r t j  R w S) - Y~ q)(R t.) S)) + exp - 
R ~ E , S ~ H  R o E ,  S e l l  

1 

1 + e x p  Z r  
R ~ E ,  S~ H 

, % e(R u s) 
R ~ E , S ~ H  
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Since �9 is the potential for a *GRF 

# s ~ b \ ~ ( { x }  u R  uS)  = 0. 

Thus 

p [ { x } l E  u .  ] -- p[{~} IE3 

and we have MRF which completes Step 1. 

Step 2. (Existence of a *GRF with the same conditional probabilities as 

given MRF). Note that by suitable choice of 9(r we can arrange that the Z of 

equation (5) is one. I f  that is done and we use (1) then 

- log P(r = U(A U F) = UI'(A) = • OF(B). 
B o A  

The potential �9 e is defined on subsets o lD but it cart be trivially extended to a 

potential defined on finite subsets of Z ~ and yielding the same P. Now suppress 

the superscript F. From the last equation and by the principle of inclusion and 

exclusion 

(VA ~ D)*(A) = X ( -  1)*A\BU(B). 
B = A  

We can extend r to all finite subsets of Z ~ by requiring 

(VR # R tq D)O(R) = O . 

Define 

(9) 

0o) 

�9 x:~(H) = ]E O({x} LJR L)H) 
R r  

Ux;n(l) = • ~x:E(n). 
H r  

I f  we use the MRF requirement and reverse the argument in Step 1, we see that 

i f E  c ~x, then U,:~(I) is independent o f / f o r  all I = b / $ .  Note that 

Vx;~(r = ox:~(~) = X ~ ( { x }  u R). 
R r  

By applying inclusion-exclusion to (10) we see that if  

(11) O # I = /3 / :~ ,  

then 

(12) Ox:~(I) = 

or equivalently if (11), then 

E ( -  1)~1\Sux;g(S) = 0 
S = l  
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(13) X r  
R = E  

By applying inclusion-exclusion to (13) we see that if ( l l )  and E ~ ax then 

(14) ep({x) U E U I) = 0 

which is the *GRF condition so that the conditional probabilities are those of a 

*GRF and Step 2 is completed. 

Now apply the argument of Spitzer's step 3 to see that conditional probabilities 

of  the form (8) for all x e D, E ~ 0x, and H c / 3 / 2  completely determines the RF 

which is in this case a MRF. His argument in his step 3 does not use translation 

invariance. This completes the proof of our main theorem. Note that no translation 

invariance was assumed and no uniqueness for the potential results. 

4. Translation invariance 

We can now consider what happens when we introduce the condition of trans- 

lation invariance. We say that RF (f~,~,~, P) is translation invariant (t.i.) if 

(Vx ~ D) (VE c ~3x) (Vz ~ ZV)x + z ~ D ~ P ( { x  + z}[ E + z) = P({x} ] E). 

We say that a potential is translation invariant if for all finite A c Z v and for all 

z ~Z ~ 

+(A) = +(A + z). 

In an obvious way we can talk of  a t.i. MRF and *GRF given by a t.i. potential. 

It is trivial that a *GRF given by a t.i. potential is a t.i. MRF so that the analogue 

to step 1 of Spitzer follows. The analogue of step 2 of Spitzer goes through if 

we assume 

(15) (3x ~D))~ c O. 

If  this is done, the argument defines a qb such that 

(rE c 0x) (VH D r u E u H) = 0 

and since we started with a t.i. MRF 

A,  B c 2 (Vy E Z  ~) A = B +  y:  =~ : O(A)  = t~(B). 

Thus �9 is defined for {(x) UE:  E ~ 0x} and ~ is "locally t.i.". We extend �9 to 

((x + y) u ( E  + y): E ~ 8x,  y ~ Z  ~} by O(B + y) = O(B). This yields a t.i. *GRF 

which completes the analogue of Spitzer's step 2. There is no difficulty with step 3. 



Vol. 14, 1973 MARKOV RANDOM FIELDS 99 

COROLLARY 1. I f  (15) is satisfied for  domain D every t.i. M R F  on domain B 

with BV funetion q~ is a t.i. *GRF with BV function q~ and vice versa. The poten- 

tial is defined uniquely up to an additive constant. The last two statements hold 

also for periodic random fields. 

When condition (15) is violated, the D is too small for t.i. to play a really 

satisfactory role and the uniqueness no longer holds. Consider the following 

example: v = 2, D = (x} and BV function such that ~(x +(0,1)) =~(x §  

=1 while q0(x+(1,0))=~0(x + ( -  1,0))--- 0. In this case there are many t.i. �9 's 

that yield the MRF. In particular ~ for a horizontal nearest neighbour pair is 

arbitrary. This example shows that Spitzer's main theorem requires some con- 

dition like (15) in order to be correct. 

5. Generalizations (including k-th order Markov) 

Let us now go back to the ideas of Section 3. In that section 

~x = ( yeZV\{x} :  I x -  Yl = 1}. 

This may be replaced by allowing O to be a mapping from elements of L to 

subsets of L not ontaining x and let 2 = {x} t.)Ox and .4 = w ~ a 2 .  L need not  

be a lattice although in the previous case L was ZL Let D be a finite subset of L. 

We define a GRF with BV function ~ exactly as before. Now a *GRF is defined 

as before with new 0 and bar. In the definition of a ~ MRF we again replace ia 

the definition of a MRF the old 0 and bar by the new 0 and bar. The argument 

presented in Section 3 goes through without change and we get 

COROLLARY 2. Every 0 M R F  on a domain D with BV function 99 is a "0 GRF 

with BV function ~o and vice versa. The same statement holds for periodic 

random fields. 

The condition on the �9 of our "0 GRF may be symmetrically formulated as 

for all finite A c L 

(16) x, y e a  & y ~ L \ g ~ d g ( A )  = 0  

and Corollary 2 may be formulated as (16)r MRF. 

One way of describing what we have done is to note that the operation 0 

defines a directed graph so that the edge (x, y) is in the graph if and only if y ~ Ox. 

Corollary 2 is the analogue of our main theorem when the directed graph replaces 

the graph of the lattice ZL 

Suppose we go back to Z ~ and let y E Ox if y • x and y can be reached from x 
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in less than or equal to k unit steps. Then the a MRF condition is a kth order 

Markov condition and the specialization of (16) becomes the kth order Markov 

condition which Spitzer was seeking. 

Another example would be the following. Let Z ~ = L and let y c ~x mean that 

y r x and [x - y] < k. Other metrics than the Euclidean metric can be used. 

Let us consider v = 2 and L a triangular lattice with unit edge length in R 2. 

For  each x e L, let 8x be the set of nearest neighbors. Thus for each x E L , #  0x = 6. 

For  x, y ~ L, let d(x, y) be the minimum of the number of  nearest neighbor steps 

from x to y. Note that the intermediate steps must be in L but nee~l not be in A. 

For  finite subset A of L, let fi(A), the diameter of A be the maxx,y ~ a d(x, y). 

Thus 6(ax)= 2. The vertices of  a triangle of the triangular lattice constitute a 

set A such that 6(A)= 1. For  the a we are now considering, condition (16) 

amounts to requiring 

(17) (VB)6(B) > 1 ~ r = O. 

Since the set A of  the next to the last sentence has three elements and diameter 

equal to one, we may have a *GRF with r 1 6 2  0. That  is, for a triangular 

lattice, the MRF is equivalent to *GRF which allows for 3-body interactions not 

merely 2-body interactions. It is this example to which reference was made in 

Section 1. 

6. Markov chains 

Let us consider v = 1, i.e., Z = L, and two a functions: 

(vx~z) alx = { x -  1} 
and 

(VxeZ) a2x = { x -  1,x + 1}. 

Let Rx, the remote past of  x be ~0x u~0Ox u ' " l s  For  Or, the Rlx is 

{z : z < x - 1}. For  02 the R2x is Z /2 .  Then the Markov chain condition on RF 

satisfying (a) of  Section 2 can be formulated as 

(18) (Vx e D) (VE = Olx ) (VH = Rtx)P(x ] E t.) H) = P(x [ E). 

The argument of Section 3 shows that (18) is satisfied if and only if the RF 

is a *OlGRF. This in turn is true, if and only if r is zero if ~ A > 2 or if 

A = 2 (so A = {Yl,Y2}) and ]Yl - Y z  ] > 1). From the Main Theorem, this is true 

if and only if the RF is a *O2GRF. We thus see that the a z MRF condition and the 
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Markov chain condition are equivalent. We could have replaced (18) by 

(19) (Vx ~ D)(VE = 0tx)(VH c Z \ (x  k3 01x)P(x] E t3 H) = P(x] E) 

the resulting RF's would be the class 02MRF's. This shows the equivalence 

[6] of the Markov chain condition and MRF condition when v = 1. 

7. Many states 

Hitherto we have considered the case where there are only two states, unoc- 

cupied or occupied, i.e., (Vx cO) co(x)~ {0,1}. Now suppose we return to the 

context of Sections 2 and 3. We generalize this to allow for more states. We can 

handle the case where the number of states varies with the x e D but the idea is 

clear if we analyze the case where (Vx ~ O)co(x) e {0, 1, 2,. . . ,  s} = S and s does not 

depend on x. In Sections 3 and 4, we have considered the case s = 1. In order to 

save notation we will only analyze the periodic case. 

Now f~ = S ~ ~ and P are as before. Assume condition a) is satisfied. Consider 

~,/3 E f~. We define/3 < r to mean 

(Vx)/3(x) {0, 

To get a GRF we need the energy. If  a e fl then U(~) is real valued. Before, when 

s = 1 and X = {x : co(x) = 1}, we talked of U(X)  and the analogue of what we 

do now would have been to talk of U(co). Now we let 

= Z  (f0 
B__<a 

and we can define �9 by inclusion-exclusion. The analogue for many states to (*) is 

(**) (Vx ~ Z *) (Va E S)a r 0 & or(x) = a & ot I T I s ~g 0 => ~(~) = O. 

Since we are in the periodic case, we need not consider boundary values and a 

** GRF with potential �9 (satisfying (**)) if P is defined by the analogue to (5). 

In the many state case of MRF, condition (a) of Section 2 is required. The 

analogue tG condition (b) is for all nonzero a e S 

(b') P(co(x) = a I co(. ) = ~(" ) on D I {x}) 

is independent of ~ on T \ s If  (f~, W, P) is periodic RF (with many states) ort T 

satisfying (a) and (b'), then we say that (~, o~, P) is a periodic MRF on T. 
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COROLLARY 3. Every periodic M R F  with set of states S on T is **GRF and 

vice versa. 

The analogue of  Step 1 of  the Main Theorem goes through without compli- 

cations. Condition (**) =~ (b'). 

For the analogue to Step 2, we start with a many state MRF, i.e., a RF satisfying 

(a) and (b'). On account of  (b') it is easy to show that for all nonzero a ~ S 

(b") P(o~(x) = a] co(. ) = ~(. ) on D \ {x} og(x) a_ {0, a}) 

is independent of  ~ on T l ff. This in effect reduces the consideration to at most  

two states at each location with one of  the states being 0 and the other being the 

value of  ~ at the location. Now the argument of  Step 2 can be applied to yield (**) 

so that a many state MRF has conditional probabilities given by a **GRF. Step 

3 as before shows that the conditional probabilities of  the form (b') determine 

the RF. 

Analogoues to Corollary 3 may be established for the general O. For the t.i. 

ease where uniqueness is again attained if (15) is staisfied, one gets uniqueness of 

the potential �9 in the **GRF. 

8. Discussion 

The contents of  the current paper, already compared (with that of  Spitzer), 

should be compared with that of Averintsev [1] and that of [Hammersely and 

Clifford [4]. Averintsev allows for many states but limits himself to a binary 

potential and to Z v as the multidimensional time. He also does not deal with the 

kth order MRF. Hammersely and Clifford deal with the case where Z ~ is replaced 

by a general graph and so can be adapted to a kth order MRF although they do 

not do this. The repeated use of  inclusion-exclusion in the current paper is re- 

presented by a somewhat more complicated "blackening algebra" in [4]. In [4] 

many states are considered as well as many body potentials. 
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REFERENCES 

1. M. B. Averintsev, On a method of  describing discrete parameter random fields, Problemy 
Perada~i Informacii, 6 (1970) 100-109. 

2. M.B. Averintsev, The description of a Markov random field by Gibbs conditional distribu- 
tions, Teor. Verojatnost i Primenen 17 (1972), 21-35. 

3. R. L. Dobrusin, Description of  a random field by means of conditional probabilities and 
conditions governing its regularity, Theor. Probability Appl. (English translation of Teor Verojat- 
nost i Primenen 13 (1968), 197-224. 

4. J. M. Hammersely and P. Clifford, Markov fields of finite graphs and lattices, (Berkeley 
preprint). 

5. D. Ruelle, Statistical Mechanics, Benjamin, New York, 1969. 
6. F. Spitzer, Markov random fields and Gibbs ensembles. Amer. Math. Montly 78 (1971), 

142-154. 

THE WEIZMANN INSTITUTE, REHOVOT, ISRAEL 
AND 

INDIANA UNIVERSITY, BLOOMINGTON, INDIANA, U.S.A. 


